Field calibration of soil-core microcosms: Fate of a genetically altered rhizobacterium

Microb Ecol. 1991 Dec;21(1):163-73. doi: 10.1007/BF02539151.

Abstract

Microcosms containing intact soil-cores are a potential tool for assessing the risks of the release of genetically engineered microorganisms (GEMs) to the environment. Before microcosms become a standard assessment tool, however, they must first be calibrated to ensure that they adequately simulate key parameters in the field. Four systems were compared: intact soil-core microcosms located in the laboratory at ambient temperature and in a growth chamber with temperature fluctuations that simulated average conditions in the field, field lysimeters, and field plots. These four systems were inoculated with rifampicin-resistantPseudomonas sp. and planted to winter wheat. Populations of thePseudomonas sp. in soil decreased more rapidly at ambient temperature, but population size at the three-leaf stage of wheat growth was the same in all four systems. Populations of thePseudomonas sp. on the rhizoplane of wheat were the same at the three-leaf stage in all four systems, and colonization with depth at the final boot stage-sampling was also similar. In general, microcosms incubated at ambient temperature in the laboratory or in the growth chamber were similar to those in the field with respect to survival of and colonization of the rhizoplane by the introducedPseudomonas sp.