Manganese oxidation by microbial consortia from sand filters

Microb Ecol. 1992 Jul;24(1):91-108. doi: 10.1007/BF00171973.

Abstract

The role of microbial consortia on the removal of manganese (Mn) was examined on sand from three different Belgian rapid sand filters for the treatment of ground water. Microorganisms closely associated with deposits of Fe and amorphous Mn precipitates were observed by SEM and EDAX techniques on sand from the filters able to remove Mn efficiently. Bacterial counts were performed. Of the CFU enumerated on PYM-medium, 25-33% displayed Mn-oxidizing activity.Batch cultures were set up by inoculating a Mn-containing, low organic medium with sand from one of the filters. Microbial growth resulted in the formation of Mn-removing bacterial flocs and a pH increase. Suppression of microbial growth by addition of azide, kanamycin, or by autoclaving reduced removal of Mn(2+) from 0.5 mM/day to 0.05-0.11 mM/day. Buffering the pH of the medium at 7.5 (0.1 mM Hepes) decelerated the Mn removal but did not halt it, whereas microelectrode measurements revealed a clear pH drop of about 0.7 units inside bacterial flocs. In the absence of Mn(2+), the pH drop was only 0.4 units. The auto-catalytic removal of Mn by the Mn oxide coated filter sand was not sufficient to explain the Mn removal observed. Inactivated cells were not capable of a pronounced autocatalytic Mn removal. Experiments with enrichment cultures indicated that the Mn-removing capacity of the microbial sand filter consortia was not constitutive but was promoted by preadaptation and the presence of a substratum. These results clearly link Mn oxidation in rapid sand filters to microbial processes.