Core-shell Zn2GeO4 nanorods and their size-dependent photoluminescence properties

Nanoscale. 2013 Dec 21;5(24):12335-41. doi: 10.1039/c3nr04638a.

Abstract

Size-tunable crystalline core-crystalline shell Zn2GeO4 nanorods were synthesized via a facile hydrothermal reaction. High purity Zn2GeO4 nanorods were obtained at pH = 7. The length of Zn2GeO4 nanorods (L = 50-100 nm) can be controlled through a one-step process, while micro-sized nanorods with an aspect ratio of the length to the diameter of 10 were yielded in a two-step process. The single crystalline nature of Zn2GeO4 nanorods with a core-shell structure was verified by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) measurements. The Raman study revealed that there is no oxygen defect in Zn2GeO4 nanocrystals, suggesting that photoluminescence emission of Zn2GeO4 can be attributed to the presence of the interstitial Zn defect in Zn2GeO4 nanocrystals. As the diameter of nanorods decreased, the excitation and emission peaks appeared to be redshifted due to the quantum size effect.

Publication types

  • Research Support, Non-U.S. Gov't