Ultrathin polymer films for transparent electrode applications prepared by controlled nucleation

ACS Appl Mater Interfaces. 2013 Nov 27;5(22):11654-60. doi: 10.1021/am403135p. Epub 2013 Nov 7.

Abstract

The vacuum vapor phase polymerization (VPP) technique is capable of producing conducting polymer films with conductivities up to 3400 S cm(-1). However, the method is not able to produce robust nano-thin films as required for transparent conducting electrode (TCE) applications. We show that with the addition of aprotic solvents or chelating agents to the oxidant mixture, it is possible to control the polymerization rate, and nucleation, in the VPP process. This provides the opportunity of altering the grain size and depositing conducting polymer films with a thickness of 16 to 200 nm with resulting optical transmission within the range 50-98% that are robust enough to endure the post polymerization processing steps. The figure of merit (FoM), which is used to quantify a film's suitability for TCE applications, results in values from 12 to 25. This result indicates that the nano-films outperform most of the previously reported graphene films and approaches the accepted industry standard for TCE applications.