Self-assembly of colloidal nanoparticles inside charged droplets during spray-drying in the fabrication of nanostructured particles

Langmuir. 2013 Oct 29;29(43):13152-61. doi: 10.1021/la403127e. Epub 2013 Oct 18.

Abstract

Studies on self-assembly of colloidal nanoparticles during formation of nanostructured particles by spray-drying methods have attracted a large amount of attention. Understanding the self-assembly phenomenon allows the creation of creative materials with unique structures that may offer performance improvements in a variety of applications. However, current research on the self-assembly of colloidal nanoparticles have been conducted only on uncharged droplet systems. In this report, we first investigated the self-assembly processes of charged colloidal nanoparticles in charged droplets during spray-drying. Silica nanoparticles and polystyrene spheres are used as a model system. To induce a positive or a negative charge on the droplets, we used an electrospray method. Repulsive and attractive interactions between charged colloidal nanoparticles and droplet surface are found to control the self-assembly of colloidal nanoparticles inside the charged droplet. Interestingly, self-assembly of colloidal nanoparticles inside charged droplets under various processing parameters (i.e., droplet charge, droplet diameter, and surface charge, size, and composition of colloidal nanoparticles) allows the formation of unique nanostructured particles, including porous and hollow particles with control over the internal structure, external shape, number of hollow cavities, and shell thickness, in which this level of control cannot be achieved using conventional spray-drying method.