A vaccinia virus recombinant transcribing an alphavirus replicon and expressing alphavirus structural proteins leads to packaging of alphavirus infectious single cycle particles

PLoS One. 2013 Oct 9;8(10):e75574. doi: 10.1371/journal.pone.0075574. eCollection 2013.

Abstract

Poxviruses and Alphaviruses constitute two promising viral vectors that have been used extensively as expression systems, or as vehicles for vaccine purposes. Poxviruses, like vaccinia virus (VV) are well-established vaccine vectors having large insertion capacity, excellent stability, and ease of administration. In turn, replicons derived from Alphaviruses like Semliki Forest virus (SFV) are potent protein expression and immunization vectors but stocks are difficult to produce and maintain. In an attempt to demonstrate the use of a Poxvirus as a means for the delivery of small vaccine vectors, we have constructed and characterized VV/SFV hybrid vectors. A SFV replicon cDNA was inserted in the VV genome and placed under the control of a VV early promoter. The replicon, transcribed from the VV genome as an early transcript, was functional, and thus capable of initiating its own replication and transcription. Further, we constructed a VV recombinant additionally expressing the SFV structural proteins under the control of a vaccinia synthetic early/late promoter. Infection with this recombinant produced concurrent transcription of the replicon and expression of SFV structural proteins, and led to the generation of replicon-containing SFV particles that were released to the medium and were able to infect additional cells. This combined VV/SFV system in a single virus allows the use of VV as a SFV delivery vehicle in vivo. The combination of two vectors, and the possibility of generating in vivo single-cycle, replicon containing alphavirus particles, may open new strategies in vaccine development or in the design of oncolytic viruses.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alphavirus / genetics*
  • DNA, Complementary / genetics*
  • DNA, Viral / genetics*
  • Replicon / genetics
  • Vaccinia virus / genetics*
  • Viral Structural Proteins / genetics
  • Viral Structural Proteins / metabolism*

Substances

  • DNA, Complementary
  • DNA, Viral
  • Viral Structural Proteins

Grants and funding

This work was supported by contracts QLK2-CT2002-01867 and CT2006-037536 from the European Commission, and grants BFU2005-05124 and BIO2008-03713 from Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica and by grant S2009/TIC-1476 from Comunidad Autónoma de Madrid. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.