A prototypical ionic liquid explored by ab initio molecular dynamics and Raman spectroscopy

J Chem Phys. 2013 Oct 14;139(14):144309. doi: 10.1063/1.4823824.

Abstract

We present an analysis of the liquid and of a small isolated cluster of n-ethyl ammonium nitrate based on "first principles" molecular dynamics. We discover that the peculiar properties of ionic liquids make such compounds ideal candidates for such an analysis. We have been able to characterize some important features of the liquid structure and we have validated our simulations by comparing our findings with experimental vibrational spectra of the liquid phase. Theoretical spectra, which present a remarkable agreement with the measurements, besides the assignment of the main spectra features, allow an interpretation of the spectra at high frequencies where the vibrational motions involve the hydrogen-bonded atoms, thus providing a picture of the hydrogen bonding network that exists in such compounds.