Crystal field and magnetism of Pr³⁺ and Nd³⁺ ions in orthorhombic perovskites

J Phys Condens Matter. 2013 Nov 6;25(44):446001. doi: 10.1088/0953-8984/25/44/446001. Epub 2013 Oct 10.

Abstract

Fifteen parameters characterizing the crystal field of rare-earth ions in the RMO3 perovskites (R=Pr, Nd, M=Ga, Co) are calculated using a first-principles electronic structure and the Wannier projection. The method contains a single adjustable parameter that characterizes the hybridization of R(4f) states with the states of oxygen ligands. Subsequently the energy levels and magnetic moments of the trivalent R ion are determined by diagonalization of an effective Hamiltonian which, besides the crystal field, contains the 4f electron-electron repulsion, spin-orbit coupling and interaction with magnetic field. In the Ga compounds the energy levels of the ground multiplet agree within a few meV with those determined experimentally by other authors. For all four compounds in question the temperature dependence of magnetic susceptibility is measured on polycrystalline samples and compared with the results of calculation. For NdGaO3 the theory is also compared with the magnetic measurements on a single crystal presented by Luis et al (1998 Phys. Rev. B 58 798). Good agreement between the experiment and theory is found.

Publication types

  • Research Support, Non-U.S. Gov't