Blockade of tumour necrosis factor-α in experimental autoimmune encephalomyelitis reveals differential effects on the antigen-specific immune response and central nervous system histopathology

Clin Exp Immunol. 2014 Jan;175(1):41-8. doi: 10.1111/cei.12209.

Abstract

In various autoimmune diseases, anti-tumour necrosis factor (TNF)-α treatment has been shown to reduce both clinical disease severity and T helper type 1 (Th1)1/Th17 responses. In experimental autoimmune encephalomyelitis (EAE), however, the role of TNF-α has remained unclear. Here, C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 and treated with anti-TNF-α, control antibody or vehicle. The clinical disease course, incidence and severity were assessed. On day 20 after immunization the antigen-specific Th1/Th17 response was evaluated by enzyme-linked immunospot (ELISPOT) in spleen and central nervous system (CNS). Also, the extent of spinal cord histopathology was analysed on semi- and ultrathin sections. Our results demonstrate that anti-TNF-α treatment reduced the incidence and delayed the onset of EAE, but had no effect on disease severity once EAE had been established. Whereas anti-TNF-α treatment induced an increase in splenic Th1/Th17 responses, there was no effect on the number of antigen-specific Th1/Th17 cells in the spinal cord. Accordingly, the degree of CNS histopathology was comparable in control and anti-TNF-α-treated mice. In conclusion, while the anti-TNF-α treatment had neither immunosuppressive effects on the Th1/Th17 response in the CNS nor histoprotective properties in EAE, it enhanced the myelin-specific T cell response in the immune periphery.

Keywords: EAE/MS; T cells; inflammation; monocytes/macrophages; neuroimmunology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Neutralizing / immunology
  • Antibodies, Neutralizing / pharmacology*
  • Encephalomyelitis, Autoimmune, Experimental / chemically induced
  • Encephalomyelitis, Autoimmune, Experimental / immunology*
  • Encephalomyelitis, Autoimmune, Experimental / pathology
  • Mice
  • Myelin-Oligodendrocyte Glycoprotein / immunology
  • Myelin-Oligodendrocyte Glycoprotein / toxicity*
  • Peptide Fragments / immunology
  • Peptide Fragments / toxicity
  • Spleen / immunology
  • Spleen / pathology
  • Th1 Cells / immunology*
  • Th1 Cells / pathology
  • Th17 Cells / immunology*
  • Th17 Cells / pathology
  • Tumor Necrosis Factor-alpha / antagonists & inhibitors*
  • Tumor Necrosis Factor-alpha / immunology

Substances

  • Antibodies, Neutralizing
  • Myelin-Oligodendrocyte Glycoprotein
  • Peptide Fragments
  • Tumor Necrosis Factor-alpha
  • myelin oligodendrocyte glycoprotein (35-55)