Non-Poissonian formation of multiple excitons in photoexcited CdTe colloidal quantum qots by femtosecond nonresonant two-photon absorption

Opt Express. 2013 Oct 7;21(20):24300-8. doi: 10.1364/OE.21.024300.

Abstract

Using direct multiexcitonic spectroscopy, we experimentally observe for the first time the non-Poissonian formation of multiple excitons by femtosecond nonresonant two-photon absorption process in semiconductor colloidal quantum dots (QDs). Each of the multiple excitons is individually generated via the absorption of a pair of photons during the femtosecond pulse irradiation. The non-Poissonian distribution of the generated excitons is reflected as a non-quadratic dependence on the pulse intensity of the average number of excitons per QD. This is the main observation of the present work. It is explained by a multiexcitonic formation model that is based on the phenomenon of intrapulse state filling of the few quantum electronic states accessed by the two-photon transitions. The experiments are conducted with 3.9-nm CdTe QDs in room-temperature hexane solution using the femtosecond pump-probe transient absorption technique, where an intense pump pulse generates the excitons and a weak probe pulse measures their number via intraband one-photon absorption.

Publication types

  • Research Support, Non-U.S. Gov't