Synthesis and characterization of palladium and palladium-cobalt nanoparticles on Vulcan XC-72R for the oxygen reduction reaction

ACS Appl Mater Interfaces. 2013 Nov 27;5(22):11603-12. doi: 10.1021/am402932h. Epub 2013 Nov 5.

Abstract

A single-source approach was used to synthesize bimetallic nanoparticles on a high-surface-area carbon-support surface. The synthesis of palladium and palladium-cobalt nanoparticles on carbon black (Vulcan XC-72R) by chemical and thermal reduction using organometallic complexes as precursors is described. The electrocatalysts studied were Pd/C, Pd2Co/C, and PdCo2/C. The nanoparticles composition and morphology were characterized using inductively coupled plasma mass spectrophotometer (ICP-MS), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray fluorescence spectroscopy (EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. Electrocatalytic activity towards the oxygen reduction reaction (ORR) and methanol tolerance in oxygen-saturated acid solution were determined. The bimetallic catalyst on carbon support synthetized by thermal reduction of the Pd2Co precursor has ORR electrocatalytic activity and a higher methanol tolerance than a Pt/C catalyst.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.