Formation and base hydrolysis of oxidimethaneamine bridges in CoIII-amine complexes

Inorg Chem. 2013 Oct 21;52(20):12080-97. doi: 10.1021/ic4019053. Epub 2013 Oct 2.

Abstract

cis-[CoL2](3+) (1a(3+)), trans-[CoL2](3+) (2a(3+)), cis-[Co(MeL)2](3+) (1b(3+)), and trans-[Co(MeL)2](3+) (2b(3+)), L = 1,4-diazepan-6-amine (daza) and MeL = 6-methyl-1,4-diazepan-6-amine (Medaza), were allowed to react as templates in acetonitrile with paraformaldehyde and triethylamine. Several Co(III) complexes, where two adjacent amino groups of two ligand moieties are interlinked by an oxidimethaneamine bridge, were obtained. Connection of a primary with a secondary amino group (prim-sec bridging) was found to be predominant. The singly and doubly bridged daza- and Medaza-derivatives 7a(3+), 9a(3+) and 7b(3+), 9b(3+) were characterized by crystal-structure analysis. The bridging process resulted in a slight lengthening of the mean Co-N distance, a red shift of the A1g-T1g transition, and an increase of the Co(III)/Co(II) reduction potential. Several minor components, which could be only partially separated by chromatographic methods, were also formed. The daza-derivatives 6a(3+) (prim-prim bridged) and 10a(3+) (bidentate coordination of one daza frame) formed in small quantities. The Medaza derivatives 3b(3+) and 4b(3+) (trans configuration of the Medaza frames, with additional pending carbinolamino groups), and 8b(3+) (with a methylideneimino group) represent intermediates of the condensation process. Their structure was again corroborated by X-ray diffraction. All bridged species (6a(3+), 7a(3+), 7b(3+), 8b(3+), 9a(3+), 9b(3+), and 10a(3+)) exhibited exclusively a cis orientation of the two diazepane frames, even if the trans configured 2a(3+) or 2b(3+) were used as starting materials. Molecular mechanics calculations indicate that in the bridged species with a trans configuration steric strain is substantially more pronounced. In alkaline aqueous media, 9a(3+) and 9b(3+) revealed a complete degradation of the bridges whereby the original 1a(3+) and 1b(3+) reformed. The pseudo-first-order rate constant k(obs) of the degradation reaction was found to depend linearly on OH(-) concentration. The degradation of the first bridge is about 100 times faster than the degradation of the second. The mechanism of formation and degradation of such oxidimethaneamine bridges is discussed.