Micro-TLC Approach for Fast Screening of Environmental Samples Derived from Surface and Sewage Waters

Chromatographia. 2013;76(19):1249-1259. doi: 10.1007/s10337-013-2445-3. Epub 2013 Mar 19.

Abstract

In this work we demonstrated analytical capability of micro-planar (micro-TLC) technique comprising one and two-dimensional (2D) separation modes to generate fingerprints of environmental samples originated from sewage and ecosystems waters. We showed that elaborated separation and detection protocols are complementary to previously invented HPLC method based on temperature-dependent inclusion chromatography and UV-DAD detection. Presented 1D and 2D micro-TLC chromatograms of SPE (solid-phase extraction) extracts were optimized for fast and low-cost screening of water samples collected from lakes and rivers located in the area of Middle Pomerania in northern part of Poland. Moreover, we studied highly organic compounds loaded in the treated and untreated sewage waters obtained from municipal wastewater treatment plant "Jamno" near Koszalin City (Poland). Analyzed environmental samples contained number of substances characterized by polarity range from estetrol to progesterone as well as chlorophyll-related dyes previously isolated and pre-purified by simple SPE protocol involving C18 cartridges. Optimization of micro-TLC separation and quantification protocols of such samples were discussed from the practical point of view using simple separation efficiency criteria including total peaks number, log(product ΔhRF), signal intensity and peak asymmetry. Outcomes of the presented analytical approach, especially using detection involving direct fluorescence (UV366/Vis) and phosphomolybdic acid (PMA) visualization are compared with UV-DAD HPLC-generated data reported previously. Chemometric investigation based on principal components analysis revealed that SPE extracts separated by micro-TLC and detected under fluorescence and PMA visualization modes can be used for robust sample fingerprinting even after long-term storage of the extracts (up to 4 years) at subambient temperature (-20 °C). Such approach allows characterization of wide range of sample components that are present in given extract in high and middle concentration range. Due to protocol simplicity and low cost of analysis this method can be useful for preliminary sample screening.

Keywords: Drinking water; EDCs; Endocrine modulators; Environmental samples; Fingerprinting; Fluorescence; Multivariate statistics; Phosphomolybdic acid; Principal components analysis; Reversed-phase planar chromatography; Sewage water; Solid-phase extraction; Surface water; Thermostated micro-TLC.