Relationship between gallium pyramidalization in L·GaCl3 complexes and the electronic ligand properties

Inorg Chem. 2013 Oct 7;52(19):11493-502. doi: 10.1021/ic401817g. Epub 2013 Sep 26.

Abstract

Six new molecular GaCl3 adducts of electron rich compounds of the carbone (carbodiphosphorane, tetraaminoallene) and cyclic alkyl amino carbene (CAAC) families have been synthesized and characterized by X-ray crystallography. The sum of their Cl-Ga-Cl angles has been compared to those of 20 other complexes exhibiting various oxygen-, nitrogen-, phosphorus-, and carbon-donor ligands for which good quality X-ray analyses have been reported. The pyramidalization of the GaCl3 moiety in L·GaCl3 complexes has been checked against the computed antisymmetric stretching of the Ga-Cl bonds. It has also been compared to the symmetric stretching of the C-O bonds of the corresponding L·Ni(CO)3 complexes (Tolman Electronic Parameter). On this basis, a relationship between the pyramidalization observed in the gallium complexes and the electronic ligand properties has been established.