Oblique effect in visual mismatch negativity

Front Hum Neurosci. 2013 Sep 23:7:591. doi: 10.3389/fnhum.2013.00591. eCollection 2013.

Abstract

We investigated whether visual orientation anisotropies (known as oblique effect) exist in non-attended visual changes using event-related potentials (ERP). We recorded visual mismatch negativity (vMMN) which signals violation of sequential regularities. In the visual periphery unattended, task-irrelevant Gábor patches were displayed in an oddball sequence while subjects performed a tracking task in the central field. A moderate change (50°) in the orientation of stimuli revealed no consistent change-related components. However, we found orientation-related differences around 170 ms in occipito-temporal areas in the amplitude of the ERPs evoked by standard stimuli. In a supplementary experiment we determined the amount of orientation difference that is needed for change detection in an active, attended paradigm. Results exhibited the classical oblique effect; subjects detected 10° deviations from cardinal directions, while threshold from oblique directions was 17°. These results provide evidence that perception of change could be accomplished at significantly smaller thresholds, than what elicits vMMN. In Experiment 2 we increased the orientation change to 90°. Deviant-minus-standard difference was negative in occipito-parietal areas, between 120 and 200 ms after stimulus onset. VMMNs to changes from cardinal angles were larger and more sustained than vMMNs evoked by changes from oblique angles. Changes from cardinal orientations represent a more detectable signal for the automatic change detection system than changes from oblique angles, thus increased vMMN to these "larger" deviances might be considered a variant of the magnitude of deviance effect rarely observed in vMMN studies.

Keywords: attention; event-related potential (ERP); oblique effect; oddball paradigm; unconscious processing; visual mismatch negativity (vMMN).