Genetic variation in adaptive traits and seed transfer zones for Pseudoroegneria spicata (bluebunch wheatgrass) in the northwestern United States

Evol Appl. 2013 Sep;6(6):933-48. doi: 10.1111/eva.12077. Epub 2013 Jun 6.

Abstract

A genecological approach was used to explore genetic variation in adaptive traits in Pseudoroegneria spicata, a key restoration grass, in the intermountain western United States. Common garden experiments were established at three contrasting sites with seedlings from two maternal parents from each of 114 populations along with five commercial releases commonly used in restoration. Traits associated with size, flowering phenology, and leaf width varied considerably among populations and were moderately correlated with the climates of the seed sources. Pseudoroegneria spicata populations from warm, arid source environments were smaller with earlier phenology and had relatively narrow leaves than those from mild climates with cool summers, warm winters, low seasonal temperature differentials, high precipitation, and low aridity. Later phenology was generally associated with populations from colder climates. Releases were larger and more fecund than most of the native ecotypes, but were similar to native populations near their source of origin. Differences among native populations associated with source climates that are logical for survival, growth, and reproduction indicate that genetic variation across the landscape is adaptive and should be considered during restoration. Results were used to delineate seed transfer zones and population movement guidelines to ensure adapted plant materials for restoration activities.

Keywords: Pseudoroegneria spicata; climate change; genecology; plant adaptation; seed transfer; seed zones.