Novel alkali earth borohydride Sr(BH4)2 and borohydride-chloride Sr(BH4)Cl

Inorg Chem. 2013 Oct 7;52(19):10877-85. doi: 10.1021/ic400862s. Epub 2013 Sep 19.

Abstract

Two novel alkali earth borohydrides, Sr(BH4)2 and Sr(BH4)Cl, have been synthesized and investigated by in-situ synchrotron radiation powder X-ray diffraction (SR-PXD) and Raman spectroscopy. Strontium borohydride, Sr(BH4)2, was synthesized via a metathesis reaction between LiBH4 and SrCl2 by two complementary methods, i.e., solvent-mediated and mechanochemical synthesis, while Sr(BH4)Cl was obtained from mechanochemical synthesis, i.e., ball milling. Sr(BH4)2 crystallizes in the orthorhombic crystal system, a = 6.97833(9) Å, b = 8.39651(11) Å, and c = 7.55931(10) Å (V = 442.927(10) Å(3)) at RT with space group symmetry Pbcn. The compound crystallizes in α-PbO2 structure type and is built from half-occupied brucite-like layers of slightly distorted [Sr(BH4)6] octahedra stacked in the a-axis direction. Strontium borohydride chloride, Sr(BH4)Cl, is a stoichiometric, ordered compound, which also crystallizes in the orthorhombic crystal system, a = 10.8873(8) Å, b = 4.6035(3) Å, and c = 7.4398(6) Å (V = 372.91(3) Å(3)) at RT, with space group symmetry Pnma and structure type Sr(OH)2. Sr(BH4)Cl dissociates into Sr(BH4)2 and SrCl2 at ~170 °C, while Sr(BH4)2 is found to decompose in multiple steps between 270 and 465 °C with formation of several decomposition products, e.g., SrB6. Furthermore, partly characterized new compounds are also reported here, e.g., a solvate of Sr(BH4)2 and two Li-Sr-BH4 compounds.