Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries

Nano Lett. 2013 Oct 9;13(10):4642-9. doi: 10.1021/nl4016683. Epub 2013 Sep 13.

Abstract

A multiwalled carbon nanotube/sulfur (MWCNT@S) composite with core-shell structure was successfully embedded into the interlay galleries of graphene sheets (GS) through a facile two-step assembly process. Scanning and transmission electron microscopy images reveal a 3D hierarchical sandwich-type architecture of the composite GS-MWCNT@S. The thickness of the S layer on the MWCNTs is ~20 nm. Raman spectroscopy, X-ray diffraction, thermogravimetric analysis, and energy-dispersive X-ray analysis confirm that the sulfur in the composite is highly crystalline with a mass loading up to 70% of the composite. This composite is evaluated as a cathode material for Li/S batteries. The GS-MWCNT@S composite exhibits a high initial capacity of 1396 mAh/g at a current density of 0.2C (1C = 1672 mA/g), corresponding to 83% usage of the sulfur active material. Much improved cycling stability and rate capability are achieved for the GS-MWCNT@S composite cathode compared with the composite lacking GS or MWCNT. The superior electrochemical performance of the GS-MWCNT@S composite is mainly attributed to the synergistic effects of GS and MWCNTs, which provide a 3D conductive network for electron transfer, open channels for ion diffusion, strong confinement of soluble polysulfides, and effective buffer for volume expansion of the S cathode during discharge.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Electric Power Supplies*
  • Graphite / chemistry*
  • Ions
  • Lithium / chemistry*
  • Nanotubes, Carbon / chemistry
  • Sulfur / chemistry
  • X-Ray Diffraction

Substances

  • Ions
  • Nanotubes, Carbon
  • Sulfur
  • Graphite
  • Lithium