SIRT1 protein, by blocking the activities of transcription factors FoxO1 and FoxO3, inhibits muscle atrophy and promotes muscle growth

J Biol Chem. 2013 Oct 18;288(42):30515-30526. doi: 10.1074/jbc.M113.489716. Epub 2013 Sep 3.

Abstract

In several cell types, the protein deacetylase SIRT1 regulates the activities of FoxO transcription factors whose activation is critical in muscle atrophy. However, the possible effects of SIRT1 on the activity of FoxOs in skeletal muscle and on the regulation of muscle size have not been investigated. Here, we show that after food deprivation, SIRT1 levels fall dramatically in type II skeletal muscles (tibialis anterior), which show marked atrophy, unlike in the liver (where SIRT1 rises) or heart or the soleus, a type I muscle (where SIRT1 is unchanged). Maintenance of high SIRT1 levels by electroporation in mouse muscle inhibits markedly the muscle wasting induced by fasting as well as by denervation, and these protective effects require its deacetylase activity. SIRT1 overexpression reduces muscle wasting by blocking the activation of FoxO1 and 3. It thus prevents the induction of key atrogenes, including the muscle-specific ubiquitin ligases, atrogin1 and MuRF1, and multiple autophagy (Atg) genes and the increase in overall proteolysis. In normal muscle, SIRT1 overexpression by electroporation causes rapid fiber hypertrophy without, surprisingly, activation of the PI3K-AKT signaling pathway. Thus, SIRT1 activation favors postnatal muscle growth, and its fall appears to be critical for atrophy during fasting. Consequently, SIRT1 activation represents an attractive possible pharmacological approach to prevent muscle wasting and cachexia.

Keywords: Deacetylase; FoxO; FoxO3; Hypertrophy; Muscle Atrophy; Sirt1; Skeletal Muscle; Transcription Factors.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cachexia / genetics
  • Cachexia / metabolism
  • Cachexia / pathology
  • Fasting
  • Forkhead Box Protein O1
  • Forkhead Box Protein O3
  • Forkhead Transcription Factors / genetics
  • Forkhead Transcription Factors / metabolism*
  • Male
  • Mice
  • Muscle Proteins / genetics
  • Muscle Proteins / metabolism
  • Muscle, Skeletal / growth & development*
  • Muscle, Skeletal / pathology
  • Muscular Atrophy / genetics
  • Muscular Atrophy / metabolism*
  • Muscular Atrophy / pathology
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism
  • SKP Cullin F-Box Protein Ligases / genetics
  • SKP Cullin F-Box Protein Ligases / metabolism
  • Signal Transduction*
  • Sirtuin 1 / biosynthesis*
  • Sirtuin 1 / genetics
  • Tripartite Motif Proteins
  • Ubiquitin-Protein Ligases / genetics
  • Ubiquitin-Protein Ligases / metabolism

Substances

  • Forkhead Box Protein O1
  • Forkhead Box Protein O3
  • Forkhead Transcription Factors
  • FoxO3 protein, mouse
  • Foxo1 protein, mouse
  • Muscle Proteins
  • Tripartite Motif Proteins
  • Fbxo32 protein, mouse
  • SKP Cullin F-Box Protein Ligases
  • Trim63 protein, mouse
  • Ubiquitin-Protein Ligases
  • Phosphatidylinositol 3-Kinases
  • Proto-Oncogene Proteins c-akt
  • Sirt1 protein, mouse
  • Sirtuin 1