Photochemical processes involving the UV absorber benzophenone-4 (2-hydroxy-4-methoxybenzophenone-5-sulphonic acid) in aqueous solution: reaction pathways and implications for surface waters

Water Res. 2013 Oct 1;47(15):5943-53. doi: 10.1016/j.watres.2013.07.017. Epub 2013 Jul 24.

Abstract

The sunlight filter benzophenone-4 (BP-4) is present in surface waters as two prevailing forms, the singly deprotonated (HA-) and the doubly deprotonated one (A(2-)), with pKa2 = 7.30 ± 0.14 (μ ± σ, by dissociation of the phenolic group). In freshwater environments, BP-4 would mainly undergo degradation by reaction with ·OH and direct photolysis. The form HA(-) has a second-order reaction rate constant with ·OH (k(·OH)) of (1.87 ± 0.31)·10(10) M(-1) s(-1) and direct photolysis quantum yield Φ equal to (3.2 ± 0.6)·10(-5). The form A(2-) has (8.46 ± 0.24)·10(9) M(-1) s(-1) as the reaction rate constant with ·OH and (7.0 ± 1.3)·10(-5) as the photolysis quantum yield. The direct photolysis of HA(-) likely proceeds via homolytic breaking of the O-H bond of the phenolic group to give the corresponding phenoxy radical, as suggested by laser flash photolysis experiments. Photochemical modelling shows that because of more efficient direct photolysis (due to both higher sunlight absorption and higher photolysis quantum yield), the A(2-) form can be degraded up to 3 times faster than HA(-) in surface waters. An exception is represented by low-DOC (dissolved organic carbon) conditions, where the ·OH reaction dominates degradation and the transformation kinetics of HA(-) is faster compared to A(2-). The half-life time of BP-4 in mid-latitude summertime would be in the range of days to weeks, depending on the environmental conditions. BP-4 also reacts with Br2(·-), and a rate constant k(Br2(·-),BP-4) = (8.05 ± 1.33)·10(8) M(-1) s(-1) was measured at pH 7.5. Model results show that reaction with Br2(·-) could be a potentially important transformation pathway of BP-4 in bromide-rich (e.g. seawater) and DOM-rich environments.

Keywords: Benzophenone-4; Emerging pollutants; Environmental fate; Environmental modelling; Environmental photochemistry; Pharmaceuticals and personal care products (PPCPs); Photogenerated radicals.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Kinetics
  • Photochemistry / methods*
  • Ultraviolet Rays*
  • Water / chemistry*

Substances

  • Water