Quantitative analysis of the time-course of viral DNA forms during the HIV-1 life cycle

Retrovirology. 2013 Aug 13:10:87. doi: 10.1186/1742-4690-10-87.

Abstract

Background: HIV-1 DNA is found both integrated in the host chromosome and unintegrated in various forms: linear (DNAL) or circular (1-LTRc, 2-LTRc or products of auto-integration). Here, based on pre-established strategies, we extended and characterized in terms of sensitivity two methodologies for quantifying 1-LTRc and DNAL, respectively, the latter being able to discriminate between unprocessed or 3'-processed DNA.

Results: Quantifying different types of viral DNA genome individually provides new information about the dynamics of all viral DNA forms and their interplay. For DNAL, we found that the 3'-processing reaction was efficient during the early stage of the replication cycle. Moreover, strand-transfer inhibitors (Dolutegravir, Elvitegravir, Raltegravir) affected 3'-processing differently. The comparisons of 2-LTRc accumulation mediated by either strand-transfer inhibitors or catalytic mutation of integrase indicate that 3'-processing efficiency did not influence the total 2-LTRc accumulation although the nature of the LTR-LTR junction was qualitatively affected. Finally, a significant proportion of 1-LTRc was generated concomitantly with reverse transcription, although most of the 1-LTRc were produced in the nucleus.

Conclusions: We describe the fate of viral DNA forms during HIV-1 infection. Our study reveals the interplay between various forms of the viral DNA genome, the distribution of which can be affected by mutations and by inhibitors of HIV-1 viral proteins. In the latter case, the quantification of 3'-processed DNA in infected cells can be informative about the mechanisms of future integrase inhibitors directly in the cell context.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA, Viral / analysis*
  • DNA, Viral / genetics
  • HIV-1 / genetics*
  • HIV-1 / physiology
  • Humans
  • Reverse Transcription*
  • Time Factors
  • Virus Integration*

Substances

  • DNA, Viral