Photophysics of indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C): heavy atom effect

Spectrochim Acta A Mol Biomol Spectrosc. 2013 Dec:116:183-95. doi: 10.1016/j.saa.2013.07.011. Epub 2013 Jul 18.

Abstract

In this study the effect of carboxylic group substitution in the 2 and 5 position of indole ring on the photophysics of the parent indole chromophore has been studied. The photophysical parameters crucial in triplet state decay mechanism of aqueous indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C) have been determined applying our previously proposed methodology based on the heavy atom effect and fluorescence and phosphorescence decay kinetics [Kowalska-Baron et al., 2012]. The determined time-resolved phosphorescence spectra of I2C and I5C are red-shifted as compared to that of the parent indole. This red-shift was especially evident in the case of I2C and may indicate the possibility of hydrogen bonded complex formation incorporating carbonyl CO, the NH group of I2C and, possibly, surrounding water molecules. The possibility of the excited state charge transfer process and the subsequent electronic charge redistribution in such a hydrogen bonded complex may also be postulated. The resulting stabilization of the I2C triplet state is manifested by its relatively long phosphorescence lifetime in aqueous solution (912 μs). The relatively short phosphorescence lifetime of I5C (56 μs) may be the consequence of more effective ground-state quenching of I5 C triplet state. This hypothesis may be strengthened by the significantly larger value of the determined rate constant of I5C triplet state quenching by its ground-state (4.4 × 10(8)M(-1)s(-1)) as compared to that for indole (6.8 × 10(7)M(-1)s(-1)) and I2C (2.3 × 10(7)M(-1)s(-1)). The determined bimolecular rate constant for triplet state quenching by iodide [Formula: see text] is equal to 1 × 10(4)M(-1)s(-1); 6 × 10(3)M(-1)s(-1) and 2.7 × 10(4)M(-1)s(-1) for indole, I2 C and I5 C, respectively. In order to obtain a better insight into iodide quenching of I2C and I5C triplet states in aqueous solution, the temperature dependence of the bimolecular rate constants for iodide quenching of the triplet states has been expressed in Arrhenius form. The linearity of the obtained Arrhenius plots clearly indicated the existence of one temperature-dependent non-radiative process for the de-excitation of I2C and I5C triplet state in the presence of iodide. This process may be attributed to the solute-quenching by iodide and, most probably, proceeds via reversibly formed exciplex. The activation energies obtained from linear Arrhenius plots (1.89 kcal/mol for I5 C; 2.55 kcal/mol for I2 C) are smaller as compared to that for diffusion controlled reactions in aqueous solution (about 4 kcal/mol), which may indicate the great importance of the electrostatic interactions between solute and iodide ions in lowering the energy barrier needed for the formation of the triplet-quencher complex. Based on the theoretical predictions (at the DFT(CAM-B3LYP)/6-31+G(d,p) level of theory) and careful analysis of the obtained FTIR spectra it may be concluded that in the solid state I2 C and I5 C molecules form associates by intermolecular NH · · · OC and OH · · · OC hydrogen bonding interactions, whereas the existence of intramolecular NH · · · OC interactions in the solid state of I2C and I5C is highly unlikely.

Keywords: Arrhenius plot; Indole; Indole-2-carboxylic acid; Indole-5-carboxylic acid; Iodide quenching; Phosphorescence lifetime.

MeSH terms

  • Carboxylic Acids
  • Indoles / chemistry*
  • Iodides / chemistry
  • Kinetics
  • Luminescent Agents / chemistry*
  • Luminescent Measurements
  • Models, Molecular
  • Spectroscopy, Fourier Transform Infrared

Substances

  • Carboxylic Acids
  • Indoles
  • Iodides
  • Luminescent Agents
  • indole-2-carboxylic acid