Porous allograft bone scaffolds: doping with strontium

PLoS One. 2013 Jul 26;8(7):e69339. doi: 10.1371/journal.pone.0069339. Print 2013.

Abstract

Strontium (Sr) can promote the process of bone formation. To improve bioactivity, porous allograft bone scaffolds (ABS) were doped with Sr and the mechanical strength and bioactivity of the scaffolds were evaluated. Sr-doped ABS were prepared using the ion exchange method. The density and distribution of Sr in bone scaffolds were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS). Controlled release of strontium ions was measured and mechanical strength was evaluated by a compressive strength test. The bioactivity of Sr-doped ABS was investigated by a simulated body fluid (SBF) assay, cytotoxicity testing, and an in vivo implantation experiment. The Sr molar concentration [Sr/(Sr+Ca)] in ABS surpassed 5% and Sr was distributed nearly evenly. XPS analyses suggest that Sr combined with oxygen and carbonate radicals. Released Sr ions were detected in the immersion solution at higher concentration than calcium ions until day 30. The compressive strength of the Sr-doped ABS did not change significantly. The bioactivity of Sr-doped material, as measured by the in vitro SBF immersion method, was superior to that of the Sr-free freeze-dried bone and the Sr-doped material did not show cytotoxicity compared with Sr-free culture medium. The rate of bone mineral deposition for Sr-doped ABS was faster than that of the control at 4 weeks (3.28 ± 0.23 µm/day vs. 2.60 ± 0.20 µm/day; p<0.05). Sr can be evenly doped into porous ABS at relevant concentrations to create highly active bone substitutes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Allografts / drug effects*
  • Animals
  • Biocompatible Materials / pharmacology
  • Bone and Bones / drug effects
  • Cell Death / drug effects
  • Cell Line
  • Compressive Strength / drug effects
  • Elastic Modulus / drug effects
  • Fluorescence
  • Ions
  • Materials Testing
  • Mice
  • Osteogenesis / drug effects
  • Photoelectron Spectroscopy
  • Porosity
  • Rabbits
  • Spectrophotometry, Atomic
  • Strontium / pharmacology*
  • Tissue Scaffolds / chemistry*

Substances

  • Biocompatible Materials
  • Ions
  • Strontium

Grants and funding

Kindly thanks for the support of NSFC 81000417, 81201380 and Hospital project 10KMM33, QN201104. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.