Architectural design of the pelvic floor is consistent with muscle functional subspecialization

Int Urogynecol J. 2014 Feb;25(2):205-12. doi: 10.1007/s00192-013-2189-5. Epub 2013 Aug 1.

Abstract

Introduction and hypothesis: Skeletal muscle architecture is the strongest predictor of a muscle's functional capacity. The purpose of this study was to define the architectural properties of the deep muscles of the female pelvic floor (PFMs) to elucidate their structure-function relationships.

Methods: PFMs coccygeus (C), iliococcygeus (IC), and pubovisceral (PV) were harvested en bloc from ten fixed human cadavers (mean age 85 years, range 55-102). Fundamental architectural parameters of skeletal muscles [physiological cross-sectional area (PCSA), normalized fiber length, and sarcomere length (L(s))] were determined using validated methods. PCSA predicts muscle-force production, and normalized fiber length is related to muscle excursion. These parameters were compared using repeated measures analysis of variance (ANOVA) with post hoc t tests, as appropriate. Significance was set to α = 0.05.

Results: PFMs were thinner than expected based on data reported from imaging studies and in vivo palpation. Significant differences in fiber length were observed across PFMs: C = 5.29 ± 0.32 cm, IC = 7.55 ± 0.46 cm, PV = 10.45 ± 0.67 cm (p < 0.001). Average L(s) of all PFMs was short relative to the optimal L(s) of 2.7 μm of other human skeletal muscles: C = 2.05 ± 0.02 μm, IC = 2.02 ± 0.02 μm, PC/PR = 2.07 ± 0.01 μm (p = <0.001 compared with 2.7 μm; p = 0.15 between PFMs, power = 0.46). Average PCSA was very small compared with other human muscles, with no significant difference between individual PFMs: C = 0.71 ± 0.06 cm(2), IC = 0.63 ± 0.04 cm(2), PV = 0.59 ± 0.05 cm(2) (p = 0.21, power = 0.27). Overall, C had shortest fibers, making it a good stabilizer. PV demonstrated the longest fibers, suggesting that it functions to produce large excursions.

Conclusions: PFM design shows individual muscles demonstrating differential architecture, corresponding to specialized function in the pelvic floor.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Cadaver
  • Female
  • Humans
  • Middle Aged
  • Muscle Fibers, Skeletal / cytology
  • Muscle Fibers, Skeletal / physiology
  • Muscle, Skeletal / anatomy & histology*
  • Muscle, Skeletal / physiology
  • Pelvic Floor / anatomy & histology*
  • Pelvic Floor / physiology