Relativistic density functional theory modeling of plutonium and americium higher oxide molecules

J Chem Phys. 2013 Jul 21;139(3):034307. doi: 10.1063/1.4813284.

Abstract

The results of electronic structure modeling of plutonium and americium higher oxide molecules (actinide oxidation states VI through VIII) by two-component relativistic density functional theory are presented. Ground-state equilibrium molecular structures, main features of charge distributions, and energetics of AnO3, AnO4, An2On (An=Pu, Am), and PuAmOn, n = 6-8, are determined. In all cases, molecular geometries of americium and mixed plutonium-americium oxides are similar to those of the corresponding plutonium compounds, though chemical bonding in americium oxides is markedly weaker. Relatively high stability of the mixed heptoxide PuAmO7 is noticed; the Pu(VIII) and especially Am(VIII) oxides are expected to be unstable.