Transcutaneous delivery of micro- and nanoparticles with laser microporation

J Biomed Opt. 2013 Nov;18(11):111406. doi: 10.1117/1.JBO.18.11.111406.

Abstract

Fractional laser ablation is one of the relatively safe and minimally invasive methods used to administer micro- and nanoparticles into the skin at sufficiently large depth. In this article, we present the results of delivery of TiO₂ nanoparticles and Al₂O₃ microparticles into skin. Fractional laser microablation of skin was provided by a system based on a pulsed Er:YAG laser with the following parameters: the wavelength 2940 nm, the pulse energy 3.0 J, and the pulse duration 20 ms. Ex vivo and in vivo human skin was used in the study. The suspensions of titanium dioxide and alumina powder in polyethylene glycol with particle size of about 100 nm and 27 μm, respectively, were used. In the ex vivo experiments, reflectance spectra of skin samples with administered particles were measured and histological sections of the samples were made. In the in vivo experiment, reflectance spectroscopy, optical coherence tomography, and clinical photography were used to monitor the skin status during one month after suspension administering. It is shown that particles can be delivered into dermis up to the depth 230 μm and distributed uniformly in the tissue. Spectral measurements confirm that the particles stay in the dermis longer than 1 month.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Administration, Cutaneous
  • Aluminum Oxide / administration & dosage
  • Aluminum Oxide / chemistry
  • Drug Delivery Systems / methods*
  • Histocytochemistry
  • Humans
  • Lasers*
  • Microscopy
  • Microspheres*
  • Nanoparticles / administration & dosage*
  • Nanoparticles / chemistry
  • Skin / chemistry
  • Skin / metabolism*
  • Titanium / administration & dosage
  • Titanium / chemistry
  • Tomography, Optical Coherence

Substances

  • titanium dioxide
  • Titanium
  • Aluminum Oxide