Disulfiram deregulates HIF-α subunits and blunts tumor adaptation to hypoxia in hepatoma cells

Acta Pharmacol Sin. 2013 Sep;34(9):1208-16. doi: 10.1038/aps.2013.52. Epub 2013 Jul 15.

Abstract

Aim: Disulfiram is an aldehyde dehydrogenase inhibitor that was used to treat alcoholism and showed anticancer activity, but its anticancer mechanism remains unclear. The aim of this study was to investigate the effects of disulfiram on the hypoxia-inducible factor (HIF)-driven tumor adaptation to hypoxia in vitro.

Methods: Hep3B, Huh7 and HepG2 hepatoma cells were incubated under normoxic (20% O2) or hypoxic (1% O2) conditions for 16 h. The expression and activity of HIF-1α and HIF-2α proteins were evaluated using immunoblotting and luciferase reporter assay, respectively. Semi-quantitative RT-PCR was used to analyze HIF-mediated gene expression. Endothelial tubule formation assay was used to evaluate the anti-angiogenic effect.

Results: Hypoxia caused marked expression of HIF-1α and HIF-1α in the 3 hepatoma cell lines, dramatically increased HIF activity and induced the expression of HIF downstream genes (EPO, CA9, VEGF-A and PDK1) in Hep3B cells. HIF-2α expression was positively correlated with the induction of hypoxic genes (CA9, VEGF-A and PDK1). Moreover, hypoxia markedly increased VEGF production and angiogenic potential of Hep3B cells. Disulfiram (0.3 to 2 μmol/L) inhibited hypoxia-induced gene expression and HIF activity in a dose-dependent manner. Disulfiram more effectively suppressed the viability of Hep3B cells under hypoxia, but it did not affect the cell cycle. Overexpression of HIF-2α in Hep3B cells reversed the inhibitory effects of disulfiram on hypoxia-induced gene expression and cell survival under hypoxia.

Conclusion: Disulfiram deregulates the HIF-mediated hypoxic signaling pathway in hepatoma cells, which may contribute to its anticancer effect. Thus, disulfiram could be used to treat solid tumors that grow in a HIF-dependent manner.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological / drug effects
  • Adaptation, Physiological / physiology
  • Basic Helix-Loop-Helix Transcription Factors / antagonists & inhibitors*
  • Basic Helix-Loop-Helix Transcription Factors / biosynthesis*
  • Carcinoma, Hepatocellular / drug therapy
  • Carcinoma, Hepatocellular / metabolism*
  • Cell Hypoxia / drug effects
  • Cell Hypoxia / physiology
  • Cell Survival / drug effects
  • Cell Survival / physiology
  • Disulfiram / pharmacology*
  • Dose-Response Relationship, Drug
  • Hep G2 Cells
  • Human Umbilical Vein Endothelial Cells / drug effects
  • Human Umbilical Vein Endothelial Cells / metabolism
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit / antagonists & inhibitors*
  • Hypoxia-Inducible Factor 1, alpha Subunit / biosynthesis*
  • Protein Subunits / antagonists & inhibitors
  • Protein Subunits / biosynthesis

Substances

  • Basic Helix-Loop-Helix Transcription Factors
  • HIF1A protein, human
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Protein Subunits
  • endothelial PAS domain-containing protein 1
  • Disulfiram