Response to Baverstock, K. Comments on Rithidech, K.N.; et al. Lack of Genomic Instability in Bone Marrow Cells of SCID Mice Exposed Whole-Body to Low-Dose Radiation. Int. J. Environ. Res. Public Health 2013, 10, 1356-1377

Int J Environ Res Public Health. 2013 Jul 2;10(7):2735-40. doi: 10.3390/ijerph10072735.

Abstract

We thank Dr. Baverstock [1] for his interest in reading our article and his time in writing his comments for our work [2]. We, however, respectfully disagree with his statement that we made "two category errors" associated with the assessment of the occurrence of "genomic instability" by determining the frequencies of delayed- or late-occurring chromosomal damage. Our disagreement is based upon the well-known fact that radiation-induced genomic instability (or delayed/late-occurring damage) can be manifested in many ways. These include late-occurring chromosomal damage, or mutations, or gene expression, or gene amplifications, or transformation, or microsatellite instability, or cell killing [3-9]. Such phenomena have been detected many cell generations after irradiation. We agree that genomic instability may well be the consequence of epigenetic changes. Another mechanism mentioned by Dr. Bavertock as being probably unlikely is the reversibility of damage. This potential may not be discarded off-hand, as Dr. Baverstock prefers to do. There is much reproducible evidence of adaptive protection that depending on absorbed dose precisely may reverse early damage, and damage appearing late may be due to some form of residual damage letting the cell become genetically unstable. In other words, the argument by Dr. Baverstock regarding upward or downward causation appears to be rather speculative and far from being settled.

Publication types

  • Comment

MeSH terms

  • Animals
  • Bone Marrow Cells / radiation effects*
  • DNA Damage / radiation effects*
  • Genomic Instability*
  • Male