Growth of single-crystalline cobalt silicide nanowires and their field emission property

Nanoscale Res Lett. 2013 Jul 3;8(1):308. doi: 10.1186/1556-276X-8-308.

Abstract

In this work, cobalt silicide nanowires were synthesized by chemical vapor deposition processes on Si (100) substrates with anhydrous cobalt chloride (CoCl2) as precursors. Processing parameters, including the temperature of Si (100) substrates, the gas flow rate, and the pressure of reactions were varied and studied; additionally, the physical properties of the cobalt silicide nanowires were measured. It was found that single-crystal CoSi nanowires were grown at 850°C ~ 880°C and at a lower gas flow rate, while single-crystal Co2Si nanowires were grown at 880°C ~ 900°C. The crystal structure and growth direction were identified, and the growth mechanism was proposed as well. This study with field emission measurements demonstrates that CoSi nanowires are attractive choices for future applications in field emitters.