Lanthanides: new metallic cathode materials for organic photovoltaic cells

Phys Chem Chem Phys. 2013 Aug 21;15(31):13052-60. doi: 10.1039/c3cp52327f.

Abstract

Organic photovoltaics (OPVs) are compliant with inexpensive, scalable, and environmentally benign manufacturing technologies. While substantial attention has been focused on optimization of active layer chemistry, morphology, and processing, far less research has been directed to understanding charge transport at the interfaces between the electrodes and the active layer. Electrical properties of these interfaces not only impact efficiency, but also play a central role in stability of organic solar cells. Low work function metals are the most widely used materials for the electron transport layer with Ca being the most common material. In bulk heterojunction OPV devices, low work function metals are believed to mirror the role they play in OLEDs, where such metals are used to control carrier selectivity, transport, extraction, and blocking, as well as interface band bending. Despite their advantages, low work function materials are generally prone to reactions with water, oxygen, nitrogen, and carbon dioxide from air leading to rapid device degradation. Here we discuss the search for a new metallic cathode interlayer material that increases device stability and still provides device efficiency similar to that achieved with a Ca interlayer.