Quaternized N-substituted carboxymethyl chitosan derivatives as antimicrobial agents

Int J Biol Macromol. 2013 Sep:60:156-64. doi: 10.1016/j.ijbiomac.2013.05.022. Epub 2013 May 31.

Abstract

Introduction of quaternary ammonium moieties into N-substituted carboxymethyl chitosan (N-substituted CMCh) derivatives enhances their biological activity. Several derivatives of CMCh having a variety of N-aryl substituents bearing either electron-donating or electron withdrawing groups have been synthesized by the reaction between amino group of CMCh with various aromatic aldehydes under acidic conditions, followed by reduction of the produced Schiff base derivatives with sodium cyanoborohydride. Each of the reduced derivatives was further quaternized using N-(3-chloro-2-hydroxy-propyl)trimethylammonium chloride (Quat-188). The resulting quaternized materials were characterized by FTIR and (1)H NMR spectroscopy. Their antibacterial activities against Streptococcus pneumoniae (S. pneumonia, RCMB 010010), Bacillis subtilis (B. subtilis, RCMB 010067), as Gram positive bacteria and against Escherichia coli (E. coli, RCMB 010052) as Gram negative bacteria and their antifungal activities against Aspergillus fumigatus (A. fumigates, RCMB 02568), Geotricum candidum (G. candidum, RCMB 05097), and Candida albicans (C. albicans, RCMB 05031) were examined using agar disk diffusion method. The results indicated that all the quaternized derivatives showed better antimicrobial activities than that of CMCh. These derivatives are highly potent against Gram positive bacteria compared to Gram negative bacteria. This is illustrated for example as the values of minimum inhibitory concentration (MIC) of Q4NO2-BzCMCh against B. subtilis and S. pneumonia were 6.25 and 12.5 μg/mL, respectively corresponded to 20.0 μg/mL against E. coli. The antimicrobial activity of quaternized N-aryl CMCh derivatives affected by not only the nature of the microorganisms but also by the nature, position and number of the substituent groups on the phenyl ring. Thus while the derivatives with groups of electron withdrawing nature show higher inhibition zone diameter and lower MIC values relative to that of those having electron-donating nature, the non-substituted derivative lies between these two extremes. Antibacterial activities of Q4NO2-BzCMCh, Q3Cl-BzCMCh and Q3Br-BzCMCh against E. coli are nearly equivalent to that of the standard drug Gentamycin. Q3Br-BzCMCh emerged almost equivalent antibacterial activity to Ampicillin against S. pneumonia.

Keywords: Antibacterial activity; Antifungal activity; Quaternized N-substituted carboxymethyl chitosan derivatives; Structure–activity relationship.

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Anti-Infective Agents / chemical synthesis
  • Anti-Infective Agents / chemistry
  • Anti-Infective Agents / pharmacology*
  • Antifungal Agents / chemistry
  • Antifungal Agents / pharmacology
  • Chitosan / chemical synthesis
  • Chitosan / chemistry
  • Chitosan / pharmacology*
  • Microbial Sensitivity Tests
  • Nuclear Magnetic Resonance, Biomolecular
  • Spectroscopy, Fourier Transform Infrared

Substances

  • Anti-Bacterial Agents
  • Anti-Infective Agents
  • Antifungal Agents
  • N-(carboxymethyl)chitosan
  • Chitosan