Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation

Environ Sci Technol. 2013 Jun 18;47(12):6564-72. doi: 10.1021/es400069b. Epub 2013 May 31.

Abstract

We present a dynamic model of global copper stocks and flows which allows a detailed analysis of recycling efficiencies, copper stocks in use, and dissipated and landfilled copper. The model is based on historical mining and refined copper production data (1910-2010) enhanced by a unique data set of recent global semifinished goods production and copper end-use sectors provided by the copper industry. To enable the consistency of the simulated copper life cycle in terms of a closed mass balance, particularly the matching of recycled metal flows to reported historical annual production data, a method was developed to estimate the yearly global collection rates of end-of-life (postconsumer) scrap. Based on this method, we provide estimates of 8 different recycling indicators over time. The main indicator for the efficiency of global copper recycling from end-of-life (EoL) scrap--the EoL recycling rate--was estimated to be 45% on average, ± 5% (one standard deviation) due to uncertainty and variability over time in the period 2000-2010. As uncertainties of specific input data--mainly concerning assumptions on end-use lifetimes and their distribution--are high, a sensitivity analysis with regard to the effect of uncertainties in the input data on the calculated recycling indicators was performed. The sensitivity analysis included a stochastic (Monte Carlo) uncertainty evaluation with 10(5) simulation runs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Copper*
  • Models, Theoretical*
  • Monte Carlo Method
  • Recycling

Substances

  • Copper