Imidazolium-based ionic liquid surfaces for biosensing

Anal Chem. 2013 Jun 18;85(12):5770-7. doi: 10.1021/ac400386z. Epub 2013 Jun 5.

Abstract

Ionic liquid self-assembled monolayers (SAM) were designed and applied for binding streptavidin, promoting affinity biosensing and enzyme activity on gold surfaces of sensors. The synthesis of 1-((+)-biotin)pentanamido)propyl)-3-(12-mercaptododecyl)-imidazolium bromide, a biotinylated ionic liquid (IL-biotin), which self-assembles on gold film, afforded streptavidin sensing with surface plasmon resonance (SPR). The IL-biotin-SAM efficiently formed a full streptavidin monolayer. The synthesis of 1-(carboxymethyl)-3-(mercaptododecyl)-imidazoliumbromide, a carboxylated IL (IL-COOH), was used to immobilize anti-IgG to create an affinity biosensor. The IL-COOH demonstrated efficient detection of IgG in the nanomolar concentration range, similar to the alkylthiols SAM and PEG. In addition, the IL-COOH demonstrated low fouling in crude serum, to a level equivalent to PEG. The IL-COOH was further modified with N,N'-bis (carboxymethyl)-l-lysine hydrate to bind copper ions and then, chelate histidine-tagged biomolecules. Human dihydrofolate reductase (hDHFR) was chelated to the modified IL-COOH. By monitoring enzyme activity in situ on the SPR sensor, it was revealed that the IL-COOH SAM improved the activity of hDHFR by 24% in comparison to classical SAM. Thereby, IL-SAM has been synthesized and successfully applied to three important biosensing schemes, demonstrating the advantages of this new class of monolayers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biosensing Techniques / methods*
  • Humans
  • Imidazoles / chemistry*
  • Ionic Liquids / chemistry*
  • Surface Plasmon Resonance / methods

Substances

  • Imidazoles
  • Ionic Liquids