In vitro experimental study for the determination of cellular axial strain threshold and preferential axial strain from cell orientation behavior in a non-uniform deformation field

Cell Biochem Biophys. 2013;67(3):1249-59. doi: 10.1007/s12013-013-9643-3.

Abstract

Cells within connective tissues are routinely subjected to a wide range of non-uniform mechanical loads that regulate many cell behaviors. In the present study, the relationship between cell orientation angle and strain value of the membrane was comprehensively investigated using an inhomogeneous strain field. Additionally, the cellular axial strain threshold, which corresponds to the launching of cell reorientation response, was elucidated. Human bone marrow mesenchymal stem cells were used for these experiments. In this study, an inhomogeneous strain distribution was easily created by removing one side holes of an elastic chamber in a commonly used uniaxial stretching device. The strains of 2D stretched membranes were quantified on a position-by-position basis using the digital image correlation method. The normal strain in the direction of stretch was changed continuously from 2.0 to 15.0%. A 3D histogram of the cell frequency, which was correlated with the cell orientation angle and normal strain of the membrane, made it possible to determine the axial strain threshold accurately. The value of the axial strain threshold was 4.4 ± 0.3%, which was reasonable compared with previous studies based on cyclic uniaxial stretch stimulation (homogeneous strain field). Additionally, preferential axial strain of cells, which was a cell property firstly introduced, was also achieved and the value was -2.0 ± 0.1%. This study is novel in three respects: (i) it precisely and easily determined the axial strain threshold of cells; (ii) it is the first to suggest preferential axial strain of cells; and (iii) it methodically investigated cell behavior in an inhomogeneous strain field.

MeSH terms

  • Bone Marrow Cells / cytology
  • Cell Polarity*
  • Cells, Cultured
  • Humans
  • Mesenchymal Stem Cells / cytology*
  • Stress, Mechanical