Upgrade to iterative image reconstruction (IR) in MDCT imaging: a clinical study for detailed parameter optimization beyond vendor recommendations using the adaptive statistical iterative reconstruction environment (ASIR) Part2: The chest

Rofo. 2013 Jul;185(7):644-54. doi: 10.1055/s-0033-1335152. Epub 2013 May 21.

Abstract

Purpose: To compare the image quality in dose-reduced 64-row CT of the chest at different levels of adaptive statistical iterative reconstruction (ASIR) to full-dose baseline examinations reconstructed solely with filtered back projection (FBP) in a realistic upgrade scenario.

Materials and methods: A waiver of consent was granted by the institutional review board (IRB). The noise index (NI) relates to the standard deviation of Hounsfield units in a water phantom. Baseline exams of the chest (NI = 29; LightSpeed VCT XT, GE Healthcare) were intra-individually compared to follow-up studies on a CT with ASIR after system upgrade (NI = 45; Discovery HD750, GE Healthcare), n = 46. Images were calculated in slice and volume mode with ASIR levels of 0 - 100 % in the standard and lung kernel. Three radiologists independently compared the image quality to the corresponding full-dose baseline examinations (-2: diagnostically inferior, -1: inferior, 0: equal, + 1: superior, + 2: diagnostically superior). Statistical analysis used Wilcoxon's test, Mann-Whitney U test and the intraclass correlation coefficient (ICC).

Results: The mean CTDIvol decreased by 53 % from the FBP baseline to 8.0 ± 2.3 mGy for ASIR follow-ups; p < 0.001. The ICC was 0.70. Regarding the standard kernel, the image quality in dose-reduced studies was comparable to the baseline at ASIR 70 % in volume mode (-0.07 ± 0.29, p = 0.29). Concerning the lung kernel, every ASIR level outperformed the baseline image quality (p < 0.001), with ASIR 30 % rated best (slice: 0.70 ± 0.6, volume: 0.74 ± 0.61).

Conclusion: Vendors' recommendation of 50 % ASIR is fair. In detail, the ASIR 70 % in volume mode for the standard kernel and ASIR 30 % for the lung kernel performed best, allowing for a dose reduction of approximately 50 %.

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Algorithms*
  • Data Interpretation, Statistical*
  • Female
  • Humans
  • Male
  • Middle Aged
  • Phantoms, Imaging
  • Radiation Dosage
  • Radiographic Image Enhancement / methods*
  • Radiographic Image Interpretation, Computer-Assisted / methods*
  • Radiography, Thoracic / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Tomography, X-Ray Computed / methods*
  • Young Adult