Field-induced quantum soliton lattice in a frustrated two-leg spin-1/2 ladder

Phys Rev Lett. 2013 May 3;110(18):187201. doi: 10.1103/PhysRevLett.110.187201. Epub 2013 Apr 30.

Abstract

Based on high-field (31)P nuclear magnetic resonance experiments and accompanying numerical calculations, it is argued that in the frustrated S=1/2 ladder compound BiCu(2)PO(6) a field-induced soliton lattice develops above a critical field of μ(0)H(c1)=20.96(7) T. Solitons result from the fractionalization of the S=1, bosonlike triplet excitations, which in other quantum antiferromagnets are commonly known to experience Bose-Einstein condensation or to crystallize in a superstructure. Unlike in spin-Peierls systems, these field-induced quantum domain walls do not arise from a state with broken translational symmetry and are triggered exclusively by magnetic frustration. Our model predicts yet another second-order phase transition at H(c2)>H(c1), driven by soliton-soliton interactions, most likely corresponding to the one observed in recent magnetocaloric and other bulk measurements.