Responsive hydrogels--structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science

Chem Soc Rev. 2013 Sep 7;42(17):7391-420. doi: 10.1039/c3cs60031a. Epub 2013 May 15.

Abstract

Although the technological and scientific importance of functional polymers has been well established over the last few decades, the most recent focus that has attracted much attention has been on stimuli-responsive polymers. This group of materials is of particular interest due to its ability to respond to internal and/or external chemico-physical stimuli, which is often manifested as large macroscopic responses. Aside from scientific challenges of designing stimuli-responsive polymers, the main technological interest lies in their numerous applications ranging from catalysis through microsystem technology and chemomechanical actuators to sensors that have been extensively explored. Since the phase transition phenomenon of hydrogels is theoretically well understood advanced materials based on the predictions can be prepared. Since the volume phase transition of hydrogels is a diffusion-limited process the size of the synthesized hydrogels is an important factor. Consistent downscaling of the gel size will result in fast smart gels with sufficient response times. In order to apply smart gels in microsystems and sensors, new preparation techniques for hydrogels have to be developed. For the up-coming nanotechnology, nano-sized gels as actuating materials would be of great interest.