Applications of skeletal muscle progenitor cells for neuromuscular diseases

Am J Stem Cells. 2012 Nov 30;1(3):253-63. Print 2012.

Abstract

Neuromuscular diseases affect skeletal muscle and/or nervous control resulting in direct disruption of skeletal muscle and muscle pathology, or nervous system disruption which indirectly disrupts muscle function. Stem cell-based therapy is well-recognized as a promising approach for several types of diseases including those affecting the neuromuscular system. To design a successful therapeutic strategy, it is important to choose the most appropriate stem cell type. Skeletal muscle progenitor cells (SMPCs), also called myogenic progenitors, can contribute to muscle regeneration, differentiate into skeletal muscles, and are valuable cells for therapeutic application. Different types of stem/progenitor cells, including satellite cells, side population cells, muscle derived stem cells, mesenchymal stem cells, myogenic pericytes, and mesoangioblasts, have been identified as possible cell resources of SMPCs. Furthermore, recent advances in stem cell biology allow us to use embryonic stem cells and induced pluripotent stem cells for SMPC derivation. When skeletal muscle is chosen as a target of cell transplantation, the possible criteria for choosing the "best" progenitor/stem cell include preparation strategies, efficiency of intramuscular integration, method of cellular delivery, and functional improvement of the muscle after cell transplantation. Here, we discuss recent findings on various types of SMPCs and their promise for future clinical translation in neuromuscular diseases.

Keywords: Neuromuscular diseases; cell-based therapy; pluripotent stem cells (PSCs); skeletal muscle progenitor cells (SMPCs); transplantation.