Hydrophobic gentamicin-loaded nanoparticles are effective against Brucella melitensis infection in mice

Antimicrob Agents Chemother. 2013 Jul;57(7):3326-33. doi: 10.1128/AAC.00378-13. Epub 2013 May 6.

Abstract

The clinical management of human brucellosis is still challenging and demands in vitro active antibiotics capable of targeting the pathogen-harboring intracellular compartments. A sustained release of the antibiotic at the site of infection would make it possible to reduce the number of required doses and thus the treatment-associated toxicity. In this study, a hydrophobically modified gentamicin, gentamicin-AOT [AOT is bis(2-ethylhexyl) sulfosuccinate sodium salt], was either microstructured or encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles. The efficacy of the formulations developed was studied both in vitro and in vivo. Gentamicin formulations reduced Brucella infection in experimentally infected THP-1 monocytes (>2-log10 unit reduction) when using clinically relevant concentrations (18 mg/liter). Moreover, in vivo studies demonstrated that gentamicin-AOT-loaded nanoparticles efficiently targeted the drug both to the liver and the spleen and maintained an antibiotic therapeutic concentration for up to 4 days in both organs. This resulted in an improved efficacy of the antibiotic in experimentally infected mice. Thus, while 14 doses of free gentamicin did not alter the course of the infection, only 4 doses of gentamicin-AOT-loaded nanoparticles reduced the splenic infection by 3.23 logs and eliminated it from 50% of the infected mice with no evidence of adverse toxic effects. These results strongly suggest that PLGA nanoparticles containing chemically modified hydrophobic gentamicin may be a promising alternative for the treatment of human brucellosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Bacterial Agents / administration & dosage*
  • Anti-Bacterial Agents / adverse effects
  • Anti-Bacterial Agents / pharmacokinetics
  • Anti-Bacterial Agents / pharmacology
  • Brucella melitensis / drug effects
  • Brucellosis / drug therapy*
  • Cell Line
  • Drug Carriers
  • Female
  • Gentamicins / administration & dosage*
  • Gentamicins / adverse effects
  • Gentamicins / pharmacokinetics
  • Gentamicins / pharmacology
  • Humans
  • Hydrophobic and Hydrophilic Interactions
  • Lactic Acid
  • Macrophages / microbiology
  • Mice
  • Mice, Inbred BALB C
  • Microbial Sensitivity Tests
  • Nanoparticles*
  • Polyglycolic Acid
  • Polylactic Acid-Polyglycolic Acid Copolymer

Substances

  • Anti-Bacterial Agents
  • Drug Carriers
  • Gentamicins
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polyglycolic Acid
  • Lactic Acid