The biological impact of concurrent exposure to metallic nanoparticles and a static magnetic field

Bioelectromagnetics. 2013 Oct;34(7):500-11. doi: 10.1002/bem.21790. Epub 2013 May 2.

Abstract

The rapid advancement of technology has led to an exponential increase of both nanomaterial and magnetic field utilization in applications spanning a variety of sectors. While extensive work has focused on the impact of these two variables on biological systems independently, the existence of any synergistic effects following concurrent exposure has yet to be investigated. This study sought to ascertain the induced alterations to the stress and proliferation responses of the human adult low calcium, high temperature keratinocyte (HaCaT) cell line by the application of a static magnetic field (approximately 0.5 or 30 mT) in conjunction with either gold or iron oxide nanoparticles for a duration of 24 h. By evaluating targets at a cellular, protein, and genetic level a complete assessment of the HaCaT response was generated. A magnetic field-dependent proliferative effect was found (∼15%), which correlated with a decrease in reactive oxygen species and a simultaneous increase in ki67 expression, all occurring independently of nanoparticle presence. Furthermore, the application of a static magnetic field was able to counteract the cellular stress response induced by nanoparticle exposure through a combination of decreased reactive oxygen species production and modification of gene regulation. Therefore, we conclude that while these variables each introduce the potential to uniquely influence physiological events, no negative synergistic reactions were identified.

Keywords: cellular stress; gene regulation; gold nanoparticle; static magnetic field; superparamagnetic iron oxide nanoparticle.

MeSH terms

  • Adult
  • Calcium / metabolism
  • Cell Line
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Humans
  • Keratinocytes / cytology
  • Keratinocytes / drug effects
  • Keratinocytes / metabolism
  • Ki-67 Antigen / metabolism
  • Magnetic Fields / adverse effects*
  • Metal Nanoparticles / adverse effects*
  • Reactive Oxygen Species / metabolism
  • Temperature
  • Transcriptome / drug effects

Substances

  • Ki-67 Antigen
  • Reactive Oxygen Species
  • Calcium