Retinazone inhibits certain blood-borne human viruses including Ebola virus Zaire

Antivir Chem Chemother. 2014 Apr 11;23(5):197-215. doi: 10.3851/IMP2568.

Abstract

Background: Human HBV and HIV integrate their retro-transcribed DNA proviruses into the human host genome. Existing antiretroviral drug regimens fail to directly target these intrachromosomal xenogenomes, leading to persistence of viral genetic information. Retinazone (RTZ) constitutes a novel vitamin A-derived (retinoid) thiosemicarbazone derivative with broad-spectrum antiviral activity versus HIV, HCV, varicella-zoster virus and cytomegalovirus.

Methods: The in vitro inhibitory action of RTZ on HIV-1 strain LAI, human HBV strain ayw, HCV-1b strain Con1, enhanced green fluorescent protein-expressing Ebola virus Zaire 1976 strain Mayinga, wild-type Ebola virus Zaire 1976 strain Mayinga, human herpesvirus 6B and Kaposi's sarcoma-associated herpesvirus replication was investigated. The binding of RTZ to human glucocorticoid receptor was determined.

Results: RTZ inhibits blood-borne human HBV multiplication in vitro by covalent inactivation of intragenic and intraexonic viral glucocorticoid response elements, and, in close analogy, RTZ suppresses HIV-1 multiplication in vitro. RTZ disrupts the multiplication of blood-borne human HCV and Ebola Zaire virus at nanomolar concentrations in vitro. RTZ has the capacity to bind to human glucocorticoid receptor, to selectively and covalently bind to intraexonic viral glucocorticoid response elements, and thereby to inactivate human genome-integrated proviral DNA of human HBV and HIV.

Conclusions: RTZ represents the first reported antiviral agent capable of eradicating HIV and HBV proviruses from their human host. Furthermore, RTZ represents a potent and efficacious small-molecule in vitro inhibitor of Ebola virus Zaire 1976 strain Mayinga replication.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Antiviral Agents / chemistry
  • Antiviral Agents / pharmacology*
  • Ebolavirus / classification
  • Ebolavirus / drug effects*
  • HIV-1 / drug effects*
  • Hepacivirus / drug effects*
  • Hepatitis B virus / drug effects*
  • Humans
  • Microbial Sensitivity Tests
  • Structure-Activity Relationship
  • Thiosemicarbazones / chemistry
  • Thiosemicarbazones / pharmacology*
  • Vitamin A / analogs & derivatives*
  • Vitamin A / chemistry
  • Vitamin A / pharmacology

Substances

  • Antiviral Agents
  • Thiosemicarbazones
  • retinazone
  • Vitamin A