Biomechanics of spontaneous overground walk-to-run transition

J Exp Biol. 2013 Aug 15;216(Pt 16):3047-54. doi: 10.1242/jeb.087015. Epub 2013 Apr 25.

Abstract

The purpose of the present study was to describe the biomechanics of spontaneous walk-to-run transitions (WRTs) in humans. After minimal instructions, 17 physically active subjects performed WRTs on an instrumented runway, enabling measurement of speed, acceleration, spatiotemporal variables, ground reaction forces and 3D kinematics. The present study describes (1) the mechanical energy fluctuations of the body centre-of-mass (BCOM) as a reflection of the whole-body dynamics and (2) the joint kinematics and kinetics. Consistent with previous research, the spatiotemporal variables showed a sudden switch from walking to running in one transition step. During this step there was a sudden increase in forward speed, the so-called speed jump (0.42 m s(-1)). At total body level, this was reflected in a sudden increase in energy of the BCOM (0.83±0.14 J kg(-1)) and an abrupt change from an out-of-phase to an in-phase organization of the kinetic and potential energy fluctuations. During the transition step a larger net propulsive impulse compared with the preceding and following steps was observed due to a decrease in the braking impulse. This suggests that the altered landing configuration (prepared during the last 40% of the preceding swing) places the body in an optimal configuration to minimize this braking impulse. We hypothesize this configuration also evokes a reflex allowing a more powerful push off, which generates enough power to complete the transition and launch the first flight phase. This powerful push-off was also reflected in the vertical ground reaction force, which suddenly changed to a running pattern.

Keywords: gait transition; human; kinematics; kinetics.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomechanical Phenomena / physiology
  • Electromyography
  • Female
  • Humans
  • Kinetics
  • Knee Joint / physiology
  • Posture / physiology
  • Running / physiology*
  • Spatio-Temporal Analysis
  • Walking / physiology*