Acute toxicity, critical body residues, Michaelis-Menten analysis of bioaccumulation, and ionoregulatory disturbance in response to waterborne nickel in four invertebrates: Chironomus riparius, Lymnaea stagnalis, Lumbriculus variegatus and Daphnia pulex

Comp Biochem Physiol C Toxicol Pharmacol. 2013 Jun;158(1):10-21. doi: 10.1016/j.cbpc.2013.03.008. Epub 2013 Apr 6.

Abstract

We investigated the bioaccumulation and acute toxicity (48 h or 96 h) of Ni in four freshwater invertebrate species in two waters with hardness of 40 (soft water) and 140 mg L(-1) as CaCO(3) (hard water). Sensitivity order (most to least) was Lymnaea stagnalis > Daphnia pulex > Lumbriculus variegatus > Chironomus riparius. In all cases water hardness was protective against acute Ni toxicity with LC(50) values 3-3.5× higher in the hard water vs. soft water. In addition, higher water hardness significantly reduced Ni bioaccumulation in these organisms suggesting that competition by Ca and Mg for uptake at the biotic ligand may contribute to higher metal resistance. CBR50 values (Critical Body Residues) were less dependent on water chemistry (i.e. more consistent) than LC(50) values within and across species by ~2 fold. These data support one of the main advantages of the Tissue Residue Approach (TRA) where tissue concentrations are generally less variable than exposure concentrations with respect to toxicity. Whole body Ni bioaccumulation followed Michaelis-Menten kinetics in all organisms, with greater hardness tending to decrease B(max) with no consistent effect on K(d). Across species, acute Ni LC(50) values tended to increase with both K(d) and B(max) values - i.e. more sensitive species exhibited higher binding affinity and lower binding capacity for Ni, but there was no correlation with body size. With respect to biotic ligand modeling, log K(NiBL) values derived from Ni bioaccumulation correlated well with log K(NiBL) values derived from toxicity testing. Both whole body Na and Mg levels were disturbed, suggesting that disruption of ionoregulatory homeostasis is a mechanism of acute Ni toxicity. In L. stagnalis, Na depletion was a more sensitive endpoint than mortality, however, the opposite was true for the other organisms. This is the first study to show the relationship between Na and Ni.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chironomidae / metabolism*
  • Daphnia / metabolism*
  • Fresh Water / analysis
  • Lethal Dose 50
  • Lymnaea / metabolism*
  • Magnesium / metabolism
  • Nickel / pharmacokinetics
  • Nickel / toxicity*
  • Oligochaeta / metabolism*
  • Sodium / metabolism
  • Toxicity Tests / methods
  • Water Pollutants, Chemical / toxicity*

Substances

  • Water Pollutants, Chemical
  • Nickel
  • Sodium
  • Magnesium