Design of polymer-brush-grafted magnetic nanoparticles for highly efficient water remediation

ACS Appl Mater Interfaces. 2013 May;5(9):3784-93. doi: 10.1021/am400427n. Epub 2013 Apr 26.

Abstract

Highly efficient removal of mercury(II) ions (Hg(II)) from water has been reported by employing polymer-brush-functionalized magnetic nanoparticles (MNPs). Surface-initiated conventional radical polymerization (SI-cRP) was used to grow poly(2-aminoethyl methacrylate hydrochloride) (poly-AEMA·HCl) polymer chains on magnetite nanoparticles (Fe3O4), followed by the transformation of pendant amino groups into dithiocarbamate (DTC) groups, which showed high chelating affinity toward Hg(II) ions. This polymer-brush-based DTC-functionalized MNP (MNPs-polyAEMA·DTC) platform showed the complete removal of Hg(II) from aqueous solutions. The Hg(II) ion removal capacity and efficiency of MNPs-polyAEMA·DTC were compared with its monolayer analogue, which was derived from the direct transformation of amino groups of (3-aminopropyl) triethoxysilane (APTES)-functionalized MNPs (MNPs-APTES) to DTC functional groups (MNPs-DTC). The surface chemical modifications and higher chelating functional group density, in the case of MNPs-polyAEMA·DTC, were ascertained by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), physical property measurement system (PPMS), attenuated total reflectance infrared (ATR-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The Hg(II) ion removal capacity and efficiency of monolayer and polymer-brush-based DTC-functionalized MNPs (MNPs-DTC and MNPs-polyAEMA·DTC, respectively) were evaluated and compared by studying the effect of various factors on the percentage removal of Hg(II) such as adsorbent amount, temperature, and contact time. Furthermore, the adsorption behavior of MNPs-DTC and MNPs-polyAEMA·DTC was analyzed by applying Langmuir and Freundlich adsorption isotherm models. In addition, the adsorption thermodynamics, as well as the adsorption kinetics, were also evaluated in detail. The higher surface functional group density of MNPs-polyAEMA·DTC led to superior remediation characteristics toward Hg(II) ions than its monolayer analogue.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adsorption
  • Environmental Restoration and Remediation / methods*
  • Magnetite Nanoparticles / chemistry*
  • Mercury / isolation & purification
  • Polymers / chemistry*
  • Temperature
  • Thiocarbamates / isolation & purification
  • Water Purification / methods*

Substances

  • Magnetite Nanoparticles
  • Polymers
  • Thiocarbamates
  • Mercury