Dependence of vascular damage on higher frequency components in the rat-tail model

Ind Health. 2013;51(4):373-85. doi: 10.2486/indhealth.2012-0060. Epub 2013 Mar 22.

Abstract

Hand-Arm Vibration Syndrome (HAVS) is caused by hand-transmitted vibration in industrial workers. Current ISO guidelines (ISO 5349) might underestimate vascular injury associated with range of vibration frequencies near resonance. A rat-tail model was used to investigate the effects of higher frequencies >100 Hz on early vascular damage. 13 Male Sprague-Dawley rats (250 ± 15 gm) were used. Rat-tails were vibrated at 125 Hz and 250 Hz (49 m/s(2)) for 1D, 5D and 10D; D=days (4 h/day). Structural damage of the ventral artery was quantified by vacuole count using Toluidine blue staining whereas biochemical changes were assessed by nitrotyrosine (NT) staining. The results were analyzed using one-way repeated measures mixed-model ANOVA at p<0.05 level of significance. The structural damage increased at 125 Hz causing significant number of vacuoles (40.62 ± 9.8) compared to control group (8.36 ± 2.49) and reduced at 250 Hz (12.33 ± 2.98) compared to control group (8.36 ± 2.49). However, the biochemical alterations (NT-signal) increased significantly for 125 Hz (143.35 ± 5.8 gray scale value, GSV) and for 250 Hz (155.8 ± 7.35 GSV) compared to the control group (101.7 ± 4.18 GSV). Our results demonstrate that vascular damage in the form of structural and bio chemical disruption is significant at 125 Hz and 250 Hz. Hence the current ISO guidelines might underestimate vascular damage at frequencies>100 Hz.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Arteries / chemistry*
  • Arteries / pathology*
  • Disease Models, Animal
  • Hand-Arm Vibration Syndrome / etiology
  • Hand-Arm Vibration Syndrome / pathology
  • Male
  • Rats
  • Rats, Sprague-Dawley
  • Tyrosine / analogs & derivatives
  • Tyrosine / analysis
  • Vacuoles
  • Vibration / adverse effects*

Substances

  • 3-nitrotyrosine
  • Tyrosine