Real-time magnetic resonance imaging-guided cryoablation of small renal tumors at 1.5 T

Invest Radiol. 2013 Jun;48(6):437-44. doi: 10.1097/RLI.0b013e31828027c2.

Abstract

Objectives: Real-time magnetic resonance imaging (MRI)-guided cryoablation has been investigated in open MRI systems with low magnetic fields (0.2-0.5 T). More advanced imaging techniques and faster imaging rates are possible at higher magnetic fields, which often require a closed-bore magnet design. However, there is very little experience with real-time interventions in closed-bore 1.5-T MRI units. Herein, we report our initial experience with real-time MRI-guided cryoablation of small renal tumors using a prototype balanced steady-state free precession imaging sequence in a closed-bore 1.5-T MRI system.

Materials and methods: From August 2008 to April 2012, 18 patients underwent MRI-guided cryoablation of small renal tumors. A 1.5-T cylindrical MRI scanner with a 125 cm × 70 cm bore and a prototype balanced steady-state free precession sequence (BEAT interactive real-time tip tracking) were used to guide the placement of 17-gauge cryoprobes in real time. Ice ball formation was monitored every 3 minutes in 1 or more imaging planes. Each ablation consisted of 2 freeze-thaw cycles. Contrast-enhanced MRI was performed after the second active thaw period. Follow-up consisted of clinical evaluation and renal protocol computed tomography (CT) or MRI performed at 1, 6, 12, 18, and 24 months and annually thereafter.

Results: During the study period, we successfully ablated 18 tumors in 18 patients in 18 sessions. The mean tumor size was 2.2 cm (median, 2 cm; range, 1.2-4.4 cm). The number of cryoprobes used per patient was determined based on tumor size. The mean number of cryoprobes used per patient was 3 (median, 3 cryoprobes; range, 2-4 cryoprobes). Fifty-six cryoprobes, 9 biopsy needles, and 2 hydrodissection needles were successfully placed under real-time MRI guidance using BEAT interactive real-time tip tracking sequence. Hydrodissection under MRI guidance was successfully performed in 4 patients. In each patient, contrast-enhanced MRI performed after the second active thaw period revealed a sharply defined avascular zone surrounding the targeted tumor, which confirmed complete ablation of the tumor with adequate margins. Although contrast media slowly accumulated in the targeted tumor in 9 patients immediately after the procedure, follow-up imaging studies performed at a mean of 16.7 months revealed no contrast enhancement within the ablation zone in these patients. Disease-specific, metastasis-free, and local recurrence-free survival rates were all 100%.

Conclusions: Real-time placement and manipulation of cryoprobes during MRI-guided cryoablation of small renal tumors in a closed-bore, high-magnetic field scanner are feasible. Technical and clinical success rates are similar to those of patients who undergo CT-guided radiofrequency ablation or cryoablation of small renal tumors. Our findings suggest that MRI-guided ablation has several advantages over CT-guided ablation, including real-time guidance for probe placement, multiplanar imaging, exquisite soft tissue contrast, and lack of ionizing radiation.

Publication types

  • Clinical Trial
  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Computer Systems
  • Cryosurgery / methods*
  • Female
  • Humans
  • Kidney Neoplasms / pathology*
  • Kidney Neoplasms / surgery*
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Surgery, Computer-Assisted / methods*
  • Treatment Outcome