Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solution-processable TiO2 layer

ACS Appl Mater Interfaces. 2013 Apr 24;5(8):2935-42. doi: 10.1021/am4001979. Epub 2013 Apr 2.

Abstract

This paper investigates the effects of localized surface plasmon resonance (LSPR) in an inverted polymer/fullerene solar cell by incorporating Au and/or Ag nanoparticles (NPs) into the TiO2 buffer layer. Enhanced light harvesting via plasmonic resonance of metal NPs has been observed. It results in improved short-circuit current density (Jsc) while the corresponding open-circuit voltage (Voc) is maintained. A maximum power conversion efficiency of 7.52% is obtained in the case of introducing 30% Ag NPs into the TiO2, corresponding to a 20.7% enhancement compared with the reference device without the metal NPs. The device photovoltaic characteristics, photocurrent properties, steady-state and dynamic photoluminescences of active layer on metal NP-doped TiO2, and electric field profile in metal NP-doped TiO2 layers are systematically investigated to explore how the plasmonic effects of Au and/or Ag NPs influence the OSC performance.

Publication types

  • Research Support, Non-U.S. Gov't