Functional Magnetic Resonance Imaging (fMRI): A Brief Exercise for an Undergraduate Laboratory Course

J Undergrad Neurosci Educ. 2006 Fall;5(1):A22-7. Epub 2006 Oct 15.

Abstract

Functional neuroimaging represents an important technique for the study of the brain. However, the skills necessary for collecting, processing, and analyzing functional magnetic resonance imaging (fMRI) data sets are complex and relatively few undergraduate programs offer students an opportunity to acquire these skills or to observe functional neuroimaging. We report here on our experiences working with functional neuroimaging in an undergraduate laboratory course and suggest resources for the implementation of a similar exercise in a comparable setting. This exercise is structured so that four class meetings are devoted to functional neuroimaging. During these sessions, we discuss the basics of fMRI, study design, the advantages and disadvantages of this technique for the study of brain function as well as a general overview of data processing and analysis. Due to the college's proximity to a medical school, we are able to offer students an opportunity to observe functional neuroimaging sessions (however, this component is not critical for the completion of this exercise). Two final class sessions are devoted to data processing and presentation as well as writing up the experimental results. The exercise culminates in a paper based on the American Psychological Association format for a small number of subjects. At the conclusion of the exercise, students were surveyed to assess their impressions of the lab sessions. The results from these surveys indicate that students found this portion of the laboratory course to be a very positive experience. While this lab exercise does require some initial set up, we believe it stimulates the development of critical thinking skills with a technique that is used increasingly in neuroscience research. Both print and online resources are suggested to assist faculty in setting up a similar exercise.

Keywords: behavioral neuroscience; functional magnetic resonance imaging (fMRI); laboratory course; neuroinformatics.