Triangle, square and delta-chain based cobalt tetrazolate magnets

Dalton Trans. 2013 May 14;42(18):6611-8. doi: 10.1039/c3dt32539c.

Abstract

Three novel tetrazole-based frustrated magnets, namely, Co3(OH)2(3-ptz)2(SO4)(H2O)4 (1), Co2(OH)(tzba)(H2O)4 (2) and [Co(OH)(tta)] (3) (3-ptz = 5-(3-pyridyl) tetrazole, H2tzba = 4-(1H-tetrazol-5-yl) benzoic acid, Htta = 1H-tetrazole) were hydrothermal synthesized and magnetically characterized. Compound 1 is a 2D (4,4) layered structure assembled by sulfate capped triangular [Co3(μ3-OH)(μ3-SO4)] clusters and in situ synthesized μ3-3-ptz ligands. Compound 2 features Co3(μ3-OH) triangle based magnetic Δ-chains linked with in situ generated μ5-tzba ligands to form a 2D layer. Compound 3 is a uninodal eight-connected body-centered-cubic (bcu) 3D network with square Co4O4 clusters as nodes and μ4-tta ligands as linkers. Interestingly, spin frustration was observed in these complexes due to inherent spin competition in triangle, Δ-chain and square. Magnetic studies show that 1 behaves as antiferromagnet, while 2 and 3 exhibits spin canting and long-range magnetic ordering.