Analysis of the kinetics of P+ HA- recombination in membrane-embedded wild-type and mutant Rhodobacter sphaeroides reaction centers between 298 and 77 K indicates that the adjacent negatively charged QA ubiquinone modulates the free energy of P+ HA- and may influence the rate of the protein dielectric response

J Phys Chem B. 2013 Sep 26;117(38):11112-23. doi: 10.1021/jp4011235. Epub 2013 Mar 27.

Abstract

Time-resolved spectroscopic studies of recombination of the P(+)HA(-) radical pair in photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides give an opportunity to study protein dynamics triggered by light and occurring over the lifetime of P(+)HA(-). The state P(+)HA(-) is formed after the ultrafast light-induced electron transfer from the primary donor pair of bacteriochlorophylls (P) to the acceptor bacteriopheophytin (HA). In order to increase the lifetime of this state, and thus increase the temporal window for the examination of protein dynamics, it is possible to block forward electron transfer from HA(-) to the secondary electron acceptor QA. In this contribution, the dynamics of P(+)HA(-) recombination were compared at a range of temperatures from 77 K to room temperature, electron transfer from HA(-) to QA being blocked either by prereduction of QA or by genetic removal of QA. The observed P(+)HA(-) charge recombination was significantly slower in the QA-deficient RCs, and in both types of complexes, lowering the temperature from RT to 77 K led to a slowing of charge recombination. The effects are explained in the frame of a model in which charge recombination occurs via competing pathways, one of which is thermally activated and includes transient formation of a higher-energy state, P(+)BA(-). An internal electrostatic field supplied by the negative charge on QA increases the free energy levels of the state P(+)HA(-), thus decreasing its energetic distance to the state P(+)BA(-). In addition, the dielectric response of the protein environment to the appearance of the state P(+)HA(-) is accelerated from ∼50-100 ns in the QA-deficient mutant RCs to ∼1-16 ns in WT RCs with a negatively charged QA(-). In both cases, the temperature dependence of the protein dynamics is weak.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Bacteriochlorophylls / chemistry*
  • Electron Transport
  • Mutation
  • Pheophytins / chemistry*
  • Photosynthetic Reaction Center Complex Proteins / chemistry*
  • Photosynthetic Reaction Center Complex Proteins / genetics
  • Photosynthetic Reaction Center Complex Proteins / metabolism
  • Recombinant Proteins / biosynthesis
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Rhodobacter sphaeroides / metabolism*
  • Spectrometry, Fluorescence
  • Static Electricity
  • Temperature
  • Time Factors
  • Ubiquinone / chemistry*
  • Ubiquinone / metabolism

Substances

  • Bacterial Proteins
  • Bacteriochlorophylls
  • Pheophytins
  • Photosynthetic Reaction Center Complex Proteins
  • Recombinant Proteins
  • Ubiquinone
  • bacteriopheophytin